If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+9x+700=0
a = -4.9; b = 9; c = +700;
Δ = b2-4ac
Δ = 92-4·(-4.9)·700
Δ = 13801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13801}=\sqrt{1*13801}=\sqrt{1}*\sqrt{13801}=1\sqrt{13801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1\sqrt{13801}}{2*-4.9}=\frac{-9-1\sqrt{13801}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1\sqrt{13801}}{2*-4.9}=\frac{-9+1\sqrt{13801}}{-9.8} $
| 42=31-5c | | 2(3x+2)-7=8x-12(x+3) | | -1/10y=3 | | 7+5x-3x-5+2x=29-5x | | 3/5y=1/10y+200 | | 4/5n=-32/10 | | 9A+12b=28.5 | | 3b2-8b=5b | | -6(x-2)-14(3-6x)=-36 | | 15/4=5n | | x-0.5x+6=10 | | -2x+6=-3+5x | | 4=c×3 | | 4=x•3 | | 2x+4+6x-100=180 | | 5x+(x-3)=3+8(x-1) | | 15x-20=8x | | 4x+3=5+(4x-2) | | 4x+3=5+((4x-2) | | -4.9t^2+9t+700=0 | | -221=10n+9 | | (n-2)540=n | | 2x-6/8=1 | | 3x+2+49=180 | | x^2-13x+20=6 | | (n-2)540=0 | | 8x2-2x-2=1 | | 2x•4=4 | | (7)(17^(-9x))-7=49 | | 3/2+3x/5=9/2+4x/5 | | 2^(x-1)+2^(x+1)=72 | | 2^(x-1)+2^(x+1)=72 |